THE REACTION OF 8,8-DISUBSTITUTED HEPTAFULVENES WITH

AMINES IN THE PRESENCE OF COPPER(II) ACETATE

Katsuo KIKUCHI, Yuji MAKI, Eiko NOMATA, and Kyoko TADA Department of Chemistry, Faculty of Science, Yamagata University, Koshirakawa-cho, Yamagata 990

The reaction of 8,8-dicyanoheptafulvene (<u>1a</u>) with ammonia and several kinds of amines in the presence of copper(II) acetate afforded 1,2-dihydro-2-iminocyclohepta[b]pyrrole derivatives (<u>2</u>) and/or 3-aminoisoquinoline derivatives (<u>3</u>). The reaction of 8-cyano-8-methoxycarbonylheptafulvene (lb) and amines has also been described.

In the course of the investigations on the oxidative amination of seven-membered aromatics, 1) it was found that the reaction of 8,8-dicyanohepta-fulvene (1a) and 8-cyano-8-methoxycarbonylheptafulvene (1b) with amines in the presence of copper(II) acetate gave cyclohepta[b]pyrrole derivatives (2) and/or 3-aminoisoquinoline derivatives (3). Present communication describes these novel oxidative cyclization and rearrangement reactions.

The treatment of <u>la</u> (1.54 g) and copper(II) acetate (4.00 g) in methanol (30 ml) with concd. ammonia (8 ml) at room temperature for 70 h gave 1,2-dihydro-2-iminocyclohepta[b]pyrrole-3-carbonitrile (2a) ²⁾ and 3-aminoiso-quinoline-4-carbonitrile (3a) [mp 168-169°C; UV (EtOH), λ_{Max} , nm (log ϵ): 241 (4.76), 276 (3.77), 286 (3.70), 384 (3.67); NMR (DMSO-d₆), δ , ppm: 7.1~8.2 (C₅-H~C₈-H, and NH₂, m), 9.12 (C₁-H, s) in about 44% and 26% yields, respectively. The acid hydrolysis and decarboxylation of <u>3a</u> gave 3-amino-isoquinoline. The similar treatment of <u>la</u> with methylamine, ethylamine, and benzylamine (room temperature, 0.5~1 h) gave corresponding 1,2-dihydro-1-methyl²⁾-(ethyl, and benzyl)-2-iminocyclohepta[b]pyrrole-3-carbonitriles (2b, 2c, and 2d), respectively. Their melting points, yields, and the spectral data are shown in Table 1.

Table 1.	The melting	points,	yields,	and	the	spectral	data	of	1,2-dihydro-2-
<pre>iminocyclohepta[b]pyrrole derivatives (2)</pre>									

Compounds	Mp (°C)	Yields (%)	λ Ma	UV (EtOH x, nm (lo	NMR (CDCl ₃ , ppm =NH		
<u>2b</u>	181-183	30	228 (4.11)	283 (4.38)	435 ^{a)} (4.05)		
<u>2c</u>	147-148	30	230 (4.14)	283 (4.43)	434 (4.10)	6.32	
<u>2d</u>	158-159	26	230 (4.13)	284 (4.38)	437 (4.12)	6.17	
<u>2e</u>	130-131	10	245 (4.25)	286 (4.41)	420 (4.08)	6.5~7.5 ^{b)}	

a) Lit., ²⁾ mp 185°C. UV (EtOH), $\lambda_{\rm Max}$, nm (log ϵ): 228 (4.16), 281 (4.45), and 433 (4.17).

On the other hand, the reaction of <u>la</u> with pyrrolidine in the presence of copper(II) acetate at room temperature for 1 h gave 3-pyrrolidinoisoquinoline-4-carbonitrile (<u>3b</u>) as yellow needles, mp 152-153.5°C, yield, 68%. UV (EtOH), λ_{Max} , nm (log ϵ): 255 (4.65), 295 (4.17), 405 (3.68). NMR (CDCl₃), δ , ppm: 7.2~8.1 (C₅-H~C₈-H, m), 8.97 (C₁-H, s). Permanganate oxidation of <u>3b</u> gave phthalic acid. Acid hydrolysis and decarboxylation of <u>3b</u> gave 3-pyrrolidino-isoquinoline (<u>4</u>), mp 84-85.5°C. UV (EtOH), λ_{Max} , nm (log ϵ): 246 (4.60), 294 (4.19), 303 (4.28), 393 (3.41). Similarly, the treatment of <u>la</u> with dimethylamine, piperidine, and morpholine gave 3-dimethylamino-(piperidino, and morpholino)-isoquinoline-4-carbonitriles (<u>3c</u>, <u>3d</u>, and <u>3e</u>), respectively. Their melting points, yields, and the spectral data are shown in Table 2.

The reaction of 8-cyano-8-methoxycarbonylheptafulvene ($\underline{1b}$), which was prepared under a similar manner for the preparation of 8-cyano-8-ethoxy-carbonylheptafulvene, $\underline{^3}$) with benzylamine in the presence of copper(II) acetate

$$(\underline{1a},\underline{1b}) \qquad (\underline{2a} \sim \underline{2e}) \qquad (\underline{3a} \sim \underline{3j})$$

b) Overlapped with aromatic protons.

Table 2. The melting points, yields, and the spectral data of 3-amino-isoquinoline derivatives (3)

Compounds	Mp (°C)	Yields (%)	UV (EtOH) $\lambda_{ exttt{Max}}$, nm (log $oldsymbol{arepsilon}$)				NMR (CDCl ₃ , ppm) C ₁ -H			
<u>3c</u>	103-104	37	253 (4.61)	293 (4.09)	398 (3.65)			9.00	(s)	
<u>3d</u>	88-89	52	257 (4.56)	298 (4.17)	402 (3.61)			9.05	(s)	
<u>3e</u>	116-117	22	254 (4.51)	295 (4.10)	390 (3.57)			9.04	(s)	
<u>3f</u>	101-102	46	249 (4.71)	401 (3.77)				8.88	(s)	
<u>3g</u>	98-99	28	225 (4.34)	266 (4.51)	312 (4.37)	406 (3.77)		8.95	(s)	
<u>3h</u>	109-110	29	225 (4.34)	266 (4.51)	312 (4.36)	411 (3.77)		8.95	(s)	
<u>3i</u>	114-115	19	228 (4.33)	266 (4.50)	310 (4.32)	413 (3.76)		8.92	(s)	
<u>3j</u>	153-154	18	228 (4.37)	270 (4.52)	317 (4.50)	405 (3.84)		8.97	(s)	

gave orange red needles ($\underline{2e}$), mp 130-131°C, and pale yellow needles ($\underline{3f}$), mp 101-102°C. Elemental analysis and spectral data of $\underline{2e}$ (Table 1) an $\underline{3f}$ (Table 2) indicate that the former is methyl 1,2-dihydro-l-benzyl-2-iminocyclohepta[b]-pyrrole-3-carboxylate, and the latter is methyl 3-benzylaminoisoquinoline-4-carboxylate.

The reaction of <u>la</u> with aromatic amines did not afford clear results. However, the reaction of <u>lb</u> with aniline, p-toluidine, p-anisidine, and p-bromoaniline under a similar condition (room temperature, $1 \sim 1.5$ h), gave methyl 3-anilino-(3-p-toluidino, 3-p-anisidino, and 3-p-bromoanilino)-isoquinoline-4-carboxylates ($\underline{3g}$, $\underline{3h}$, $\underline{3i}$, and $\underline{3j}$), respectively. Their structures were established by the elemental analyses and the spectral data, especially by the characteristic C₁-H signal (singlet at about 9 ppm) in the NMR spectra as shown in Table 2.

The rearrangement reaction of 2-amino-3-bromotropone derivatives with active methylene compounds to give quinoline derivatives has been reported.⁴⁾

However, the rearrangement of 8,8-disubstituted heptafulvenes into 3-aminoisoquinoline derivatives under an oxidative process is, in our knowledge, the first example in the seven-membered aromatic compounds.

References

- 1) a) K. Kikuchi, Y. Maki, and K. Sato, submitted to Bull. Chem. Soc. Jpn.b) K. Kikuchi, Y. Maki, and N. Saito, submitted to Bull. Chem. Soc. Jpn.
- 2) H. Nakao, N. Soma, and G. Sunagawa, Chem. Pharm. Bull., <u>13</u>, 828 (1965).
- T. Nozoe, T. Mukai, K. Osaka, and N. Shishido, Bull. Chem. Soc. Jpn., 34, 1384 (1961).
- 4) a) N. Soma, Yakugaku Zasshi, <u>82</u>, 892 (1962); b) Y. Matsumoto, Ann. Sankyo Res. Lab., <u>15</u>, 51 (1963).

(Received April 18, 1978)